UNIT 12 REGRESSION ANALYSIS,
DISCRIMINANT ANALYSIS AND
FACTOR ANALYSIS

Objectives
After studying this unit, you should be able to :

e  explain the concept of Association that takes place between a dependent variable
and a set of independent variables

e  describe the various multivariate procedures available to analyse associative data
in the context of marketing

e interpret the findings of multivariate analysis in any market research study

e use a particular technique of multivariate analysis suitable for a particular
marketing problem.

Structure

12.1  Introduction

12.2  Analysis of Variance

12.3  Regression Analysis

12.4  Discriminant Analysis
12.5  Factor Analysis

12.6  Summary

12.7  Self-Assessment Exercises

12.8  Further Readings

12.1 INTRODUCTION

In the previous block we covered the fundamentals of statistical inference with
special emphasis on hypothesis testing as an effective tool for marketing decisions.
Univariate analysis forms the foundation for the development of multivariate
analysis, which is the topic of discussion in this unit. While the concept of the
univariate analysis will continue to draw our attention time and again, our focus in
this unit will be on procedures of multivariate analysis which has emerged as the
most striking trend in marketing research methodology.

Description and analysis of associative data involves studying the relationship and
degree of association among several variables and therefore multivariate procedures
become imperative. We shall attempt to highlight the’ procedures with a marketing
orientation. It is important to realise that amongst the many techniques available,
some are more intensely used compared to others.

Analysis of variance is suitable for analysing experimental data based on field
experiments which is gaining increased attention in marketing research. It is a useful
analytical tool for marketing researchers. Whenever we are interested in comparison
of means of any number of groups, analysis of variance is an appropriate technique to
use. This technique could be applied in new product evaluation, selection of copy
theme, effectiveness of an advertising/sales promotional campaigns and the like.

Regression analysis finds out the degree or relationship between a dependent variable
and a set of independent variables by fitting a statistical equation through the method
of least square. Whenever we are interested in the combined influence of several
independent variables upon a dependent variable our study is that of multiple
regression. For example demand may be influenced not only by price but also by
growth in industrial production, extent of import prices of other goods, consumer's
income, taste and preferences etc. Market researchers could use regression for
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explaining per cent variation independent variable caused by a number of

independent variables and also problems involving prediction or forecasting.
Discriminant analysis is useful in situations where a total sample could be classified into
mutually exclusive and exhaustive groups on the basis of a set of predictor variables.
Unlike the regression analysis, these predictor variables need not be independent. For
example one may wish to predict whether sales potential in a particular marketing
territory will be “good' or "bad' based on the territory's personal disposal income,
population density and number of retail outlets. You may like to classify a consumer as
a user or non-user of one of the five brands of a product based on his age, income and
length of time spent in his present job.Here the interest is what variables discriminate
well between groups.

Factor analysis provides an approach that reduces-a set of variables into one or more
underlying variables. The technique groups together those variables that seem to
belong together and simultaneously supplies the weighing scheme. For example one
may be interested in the identification of factors that determine the company's image.
When the decision maker is overwhelmed by the factor analysis comes to his, help in
compressing there many variables into a few meaningful dimensions, like service
orientation, quality level and width of assortment in a research project involving 20
retail chains on 35 factors or variables.

12.2 ANALYSIS OF VARIANCE

Analysis of variance abbreviated as ANOVA is the hallmark of statistical methodology
pioneered by I.A. Fisher, while analysing design of experiments. This technique is
applicable for analysing experimental data. Variation is inherent in nature. The-analysis
of variance technique attempts to find out how much variation is caused by random
fluctuations called errors and how much by assignable causes. The technique breaks
down the total variation into meaningful components variation - that produced by
treatments and that produced by random errors. Here the word “treatment' implies
exposing one set of experimental data to a particular device used in an experiment. The
group or set receiving this treatment is called a control group. For example target
consumers could be put into two groups, one group is asked to taste the new brand of
tea while the other group is asked to taste the existing brand; or each group is asked to
taste first the existing brand in the morning and the new brand in-the evening. The
objective could be to evaluate whether there is any significant difference in the
perception by the two groups.

Whenever we are interested in the comparison of two or more treatment means, the
most appropriate tool is the analysis of variance. For example, a test to measure the
sales appeal effectiveness of three different package designs or a test to measure the
elasticity of four different prices, could be carried out through analysis of variance
method. Manly one test variable is used then it is called one way analysis of variance.
If two test variables are used then it is called two way analysis of variance. The
discussion will begin with one way analysis of variance which lays the foundation for
tyro way analysis of variance. We will avoid complicated mathematical derivations
and focus only on procedure and hypothesis testing relevant to marketing research.
However for-the assumption underlying the model and. computational aspect, certain
mathematical rotations and algebra become unavoidable. One thing is sure that you
will be very clear when the illustrations are discussed.

One way classification

ANOVA Model ¥, = u+a, +¢,

J=1,2 . n

1

where Yj; is jth observation corresponding to ith treatment drawn independently.
a is the number of treatments

n; is the number of observations on each treatments

20@ =0¢,(") IND(0,07)

A 1s the grand mean effect
a, is the ith treatment effect



IND means independently normally distributed. It can be shown by minimising the
sum of squares of errors with respect to.u, &, and then squaring

Total sum of squares:
= Treatment sum of squares + Error sum of squares

Computational aspect:
2

Correction factor C' = — where G is the grand total of all observations, n is the total
n

n
number of observations = z n,
i=1

Total Sum of Squares (TSS) = TSS = z Yij* - C
i.J
Treatment Sum of Squares (TRSS) = TRSS = Z:Yij2 -C
i.J
Error Sum of Squares (ESS) = TSS - TRSS
Alternative ESS can also be computed directly as

Y2
Y-y i
ij i M
This would help cross checking the result obtained by substraction as before TSS -

TRSS)

Y; = Marginal total of ith treatment

Form the ANOVA Table as follows

Source of variation D.F. (Degrees  Sum of Mean Square  F (ratio)
of Freedom) Squares
Due to Treatment a-1 TRSS TRSS/a-1 (TRSS/a-1)
(ESS/n—a)
Due to Error n-a ESS ESS/n-a
Total n-1 TSS

TRSS/(a-1) _ Treatment Mean Square
ESS/(n-a) Error Mean Square

Follows Sredecor’s F distribution with (a — 1), (n - a) d.f.
TRSS/(a-1) .
In symbol ESS/(na) nF(a-1, n-a)
Setup H, : Treatment Means are equal
H, : There is difference amongst treatment means.

If the calculated F in the ANOVA table exceeds the T46le F (a-1, n-a) at 5% level
reject H, and accept Hy.

Easy way to remember computational aspect of ANOVA.

1) If there are a treatments (generally columns) then degrees of freedom for
treatment = a-1

2) if the total number of observation is n degrees of freedom associated with Total

=n-1
3) Degrees of freedom associated with error = (2) - (1)
=(n-1) - (a-1)
=n-a

4) Sum all observations, square it and divide by n, you get correction' factors C.

5) Square each observation; sum them and subtract C, you get total sum of square
=TSS

Regression Analysis,
Discriminent Analysis
and Factor Analysis
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6) Obtain the marginal total for each treatment i (column) square it and divide by
the number of observations under column i. Sum for all i and subtract c, you get
the Treatment Sum of Squares = TRSS

7): (5) - (6) gives error sum of squares = ESS
Now you should be in a position to form the ANOVA Table.
To make matters clear let us look at an example from marketing.

A consumer product company was interested in evaluating the sales effect of two
different colours for the package of one of its products. The firm selected 10 stores
with similar monthly sales pattern, and randomly split them into two groups of 5
stores each. One group of stores was stocked with red colour packages while the
other group of stores was stocked only with blue packages. All stores were monitored
for two weeks to make certain that the packages were properly displayed and that no
stockout occurred. The following data shows the number of test packages which were
sold in each store for the two-week period. The company wants to know whether
there is significant difference in sales effectiveness of the two packages.

Sales by stores

Red package Blue package
6 16
8 18
10 20
17 27
14 24

Computation:

There are 2 treatments here - Red package and Blue package nj =5 (number of
observations under treatment 1) and n, = 5 (number of observations under treatment
D)n=n+n=5+5=10

Treatment 1 Treatment 2 Total

6 16 22

8 18 26

10 20 30

12 2 34

14 24 38
Total _5:0_ E TSF
G =150 T N

Correction factor = .Ciz= 1‘&2 = 23.@,:
a0 o - 220

TSS =62+ 8 + 107 + 122 + 147 + 167 + 182 + 202 + 222 + 242 — 2250 =330

2 2
TRSS:flg- + 1002 - 2250 =250

5
ESS = TSS - TRSS = 330-250 = 80
Anova Table
Source of variation D.F. Sumof square  #eansquares F Ratio
Due to treatment
e ' L B0_0 2o
1 10
Due to error 8
= 8 10
8
Total 9 330

Null Hypothesis Hy: There is no difference between red package and blue package in
sales effectiveness.



H;: There is difference between red and blue package in regard to sales effectiveness.
Table (1, 8) at 5% level = 5.32

Interpretation of results

Since the calculated F = (25) exceeds table F (1, 8) = 5.32, reject the null hypothesis
that the treatment means are equal and accept H;. This means at 5% level or with a
confidence level of 95%, we can state that there is difference in sales effectiveness
between red package and blue package. The analysis of variance does not tell the
researchers which of the two package is more effective. By observation, we can
conclude that the blue package was more effective than the red package.

Two-way analysis of variance

The basic procedures underlying one way analysis of variance apply also to two way
analysis of variance, except for the fact that in two-way analysis of variance, there
are two variables being tested rather than only one.

The model:
Yj=puta,+p, +¢,

The assumptions and structure are as before except that we have added one more
factor £, f or which z B; =0.1f aj, denotes treatment or column effect B denotes

block or row effect. The computational aspects, are same as before except that we
have to calculate row sum of squares (or block of squares).To recapitulate let us write
down the expression.

2

Correction factor C = —
n

Total sum of Squares (TSS) =) Y;-C
i

YZ
Treatment Sum of Squares (TRSS) = z —-C
i n,‘
2

Block Sum of Squares (BSS) = Z L. C
a

]

ERSS =TSS - TRSS - BSS

BSS involves marginal total for jth block or row, each containing number of
observations = a being the number, of treatments in each block.

ANOVA Table for two-way classifications

Source D.F. Sum of squares Meansguare F Ratio

Due to Treatment a1 TRSS TRSs {'{rfl'?) + (nfaEf:l”
Error *n—a-b+1 ESS n—:'—S:+1

Total n-1 TSS

* obtain by subtraction from total degrees of freedom, degree of freedom for treatment and black
you please note that there are two F Ratios in this ANOV A, one to treatment effect and one to block effect.

Ho: Treatment Means are equal
H;: Treatment Means are not equal For treatment

H,: Block Means are equal
H;: Block Means are not equal

If the calculated F exceeds Table F at 5%, reject H, and accept H;.
Example

The following table gives the quality ratings of 10 service stations by five marketing
research professionals. What are your conclusions on service effectiveness difference
and difference in professional.

Regression Analysis,
Discriminent Analysis
and Factor Analysis
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Service Stations
Raters 1 2 3 4 5 6 7 8 9 10 Total

A 99 70 90 99 65 8 75 70 85 92 830
B 9% 65 80 95 70 88 70 51 84 91 790
C 95 60 48 87 48 75 71 93 80 93 750
D 98 65 70. 95 67 82 73 94 86 90 820
E 97 65 62 99 60 8 76 92 90 89 810
Total 485 325 350 475 310 410 365 400 425 4554000
Computations

2

Correction Factor C = G—= 320000

n
TSS =99% + 967 +95% + 98> +97%+........... +92? +91% + 93 +
90% + 89%-320000 =9948
2 2 2
TRss = 485" | 3555 o #3357 350000 = 6810
2 2 2 2 2
Bss = B0, PO 50 8200, BIO 354000 = 400
10 10 10 10
ESS =9948 - 6810 - 400 =2738
ANOVA Tabie
Source D.F. Sum of Squares Mean Square FRatlo
6810 756.67 _g .95
Treatment &810 E_ =T756.67
(é:uﬂllumn] 9 1 ] T6.06
100.00 _
?;ﬁ} 4 400 T 100w 7606
Error 36 2738 % =76.00
Total 49 9948

Treatment (column) variations :

Null hypothesis Hy : There is no difference between the effectiveness of service
provided by various service stations.

H;: There is difference amongst service station with regard to effectiveness of
service. Since the calculated F 9.95 exceeds table F (9, 36) =2.15 at 5% level, reject
H, and accept H;:

Interpretation: With a confidence level of 95%, it can be said that there is difference
in the effectiveness of service provided by the various service stations.

Block(Row) variation:

Hp : There is no difference between rating of service effectiveness by the 5
professionals.

H; : There is difference between rating by the 5 professionals.

Since calculated F = 1.31 does not exceed the table F (4, 36) = 2.36 at 5% level, we
have no evidence to reject Ha.

Interpretation : With a confidence level of 95% we conclude that there is no
difference in rating by the 5 professionals with regard to effectiveness of service:

Activity 1
Mention briefly the usefulness of ANOVA in marketing research.



12.3 REGRESSION ANALYSIS Regression Analysis,

Discriminent Analysis

Regression analysis is probably the most widely applied technique amongst the al Fgctdll Analysis

analytical models of association used in marketing research. Regression analysis @
attempts to study the relationship between a dependent variable and a set of
independent variables (one or more). For example, in demand analysis, demand is
inversely related to price, for normal commodities. We may write D = A - BP where
D is the demand which is the dependent variable, P is the unit price of the
commodity, an independent variable. This is an example of a simple linear regression
equation. The multiple linear regressions model is the prototype of single
criterion/multiple predictor association model where we would like to study the
combined influence of several independent variables upon one dependent variable. In
the above example if P is the consumer price index, and q is the index of industrial
production, we may be able to study demand as a function of two independent
variables P and Q and write D = A -- BP + C Q as a multiple linear regression model.

The objectives of the market researchers in using Regression Analysis are

1) To study a general underlying pattern connecting the dependent variable and
independent variables by establishing a functional relationship between the two.
In this equation the degree of relationship is derived which is a matter of interest
to the researcher in his study.

2) To use the well established regression equation for problems involving
prediction and forecasting.

3) To study how much of the variation in the dependent variable is explained by
the set of independent variables. This would enable him to remove certain
unwanted variables from the system. For example if 95% of variation in demand
in a study could be explained by price and consumer rating index, the researcher
may drop other factors like industrial production, extent of imports, substitution
effect etc. which may contribute only 5% of variation in demand provided all the
causal variables are linearly independent,

We proceed by first discussing bivariate (simple) regression involving the dependent
variables as a function of one independent variable and then on to multiple
regression.

Simple linear regression model is given by
Y=0+BX +¢

where Y is the dependent variable,

X, is independent variable

€ is a random error term

Boand B; are the regression coefficients to be estimated.

Assumptions of the model
1) The relationship between Y and X; is linear.

2) Y is arandom variable which follows a normal distribution from which sample
values are drawn independently.

3) X, is fixed and is non-stochastic (non-random).
4) The means of all these normal distribution of Y as conditioned by X, licon a
straight line with slope p;.

5) e is the error term M IND (0, a?) and independent of X;.
Computational aspect
Estimated regression line based on sampling is written Y=a+ bX,

a and b are estimates of § and 3, obtained through the method of least square by

minimising the error sum of squares.

We state the normal equations without going into any derivations. The normal

equations are 11



Multivariate Analysis

©

12

z Y=na+bz X,
Y XY=a) X +b) X!
Solve these two simultaneous equations you get the values of a and b.

Total sum of squareszz (Y—@)2
(TSS)

Regression sum of squares=z (@—@)2
(RSS)

Error sum of squares:z (Y—@)2

From the ANOVA Table for Regression

Source D.F. Sum of Mean F ratio
sguares Squares
Due to Regression 1 RSS RSS RSS* . ESs
1 1 (n-2)
Due to Error n-2 ESS E
n-2
Total n-1 TSS

Hy B 1 = 0 There is no linear relationship between Y and X; (Y & X are independent).

H,B; = 0 There is linear relationship between Y and Xjas stated in our model.

If the calculated F exceeds Table F (1, n - 2) at 5% level, reject Hyand accept H;.
Strength of association

It is one thing to find the regression equation after validating the linearity relationship
but at this point we still do not know how strong the association is. In other words,
how well does X predict Y?

This is measured by the co-efficient of determination

rt = %5}; = Variation in Y explained by regression compared to total variation.
Higher the r°, greater is the degree of relationship.

The product moment correlation or simple correlation co-efficient between Y and X;
RSS

7SS

1* lies between 0 and 1. 0 measuring no correlation and 1 measuring perfect
correlation.

1S =4/, =

r lies between -1 and -;1 and the sign of r is determined by the sign of the sample
regression coefficient (b) in the sample regression equation

§:a+hﬂ

Having given a foundation structure with underlying assumptions and possible.
analysis of the model, we now turn our attention to a numerical example to clarify the
concepts. It is needless to mention that analysis of data and interpretation of the
results are of paramount importance.

Suppose that a marketing researcher is interested in consumers attitude towards
nutritional diet of a ready to eat cereal.

Xi: the amount of protein per standard serving

In the nature of a pretest , the researcher obtains consumer's interval-scaled
evaluation of the- ten concept descriptions, on a preference rating scale ranging from
1, dislike extremely, upto 9, like extremely well. The data is given below.
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Rater Preference Protein Discriminent Analysis
rating (¥) X and Factor Analysis
1 3 4 SY=43F =43 ©
2 7 9
3 2 3 IX,=43%, =43
E 1 1
5 6 3 IYX, =247
] 2 4
7 8 7 £X3 = 255
8 3 3
9 g 8
10 2 1

i) Fit a linear regression model of Y on X,.
ii) Test the validity of the equation statistically.
ii{) What do you think of the strength of association?

Answer
i) The normal equations are
ZY = na + bZx,. Heren =10

3X,Y = a3X, + b =X}
i.e. 10a + 43b = 43
43a + 255b = 247

solving these two simultaneous equations
we have b = 0.886
a = 0.491

Regression Equation is ¥ = 0.491 + 0.886X,
substitute for all X} to get y*

The regression coefficient b = 0.886 indicates the change in Y per unit change in X,

ii) Validity of the equation
ANOWVA calculation
Total sum of squares (TSS) = = (Y - Y)2
=(3-43) + (7-43) +....+ (2-43)2
= 76.10
*Regression sum of'squares (RSS) = = (Y - ¥)?
= (4.034 - 4.3)2 + (8.464 — 4302 + .......
+ (1.377 - 4.3)* = 55.01

* Error sum of squares = £ (¥ - Y)? = (-1.034)? + (~1.464)2 + .......
+ (0.623)2 = 21.09

*Table of Actual Vs predicted

Actual Predicted Error

Y Y Y-Y

3 4.034 ~1.034
7 8.464 —1.464
2 3.148 ~1.148
1 1377 -0.377
6 3.148 2.852
2 4.034 -2.034
8 6.692 1.308
3 3.148 ~0.148

13
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© 2 1.377 0.623
ANOYVA Table
Source Degrees of Sum of Mean F ratio
Freedom Squares Squares
Due to regression 1 55.01 3301 55.01 35.01 _ 20,54
1 264
Due to error B 21.09 g_I..EEE =2 54
Tatal 9 76.10

H, : Where is no relationship of linear type between Y and X,
ie. B =0
H, : Y is linearly related to X, p # 0

Interpretation of results

Calculated F =20.84 exceeds Table F (1,8) =5.32 at 5 % level. Reject H, and accept
H;. We conclude Y is a linear function of X; with a confidence level of 95%. In other
words preference rating Y is linearly related to amount of (X;) Protein per standard
serving of the cereal with a confidence level of 95%. Thus the equation is a valid one.
iii)  Strength of association

. S RSS 55.01

Coefficient of determination r’ = —— =—"— =0.723
TSS 76.10

This implies that 72.3% of the variation in Y is explained by the regression and
only 27.7% of the variation is explained by error. The association is strong to
enable X to predict Y.

r= V12 =0.850

Here r will have a positive sign since b is positive. Before starting our discussion on
the multiple regression, let us give a brief account of the u efulness of simple linear
regression in sales forecasting using time series data in which time t is an
independent variable.

1)  Linear Trend
Y=a+bt

if Y represents the sales data collected for the past many years for example last
10 years from 1979 to 1988, we normalise the year by taking t =1
corresponding to 1979, t = 2 for 1980 etc. and t = 10 for 1988. Now the simple
linear regression model can be directly applied to forecast Y (sales) say for
1989 after fitting the regression equation.

2)  Trend in semilog form Y = ab'
Taking log on both sides we have Log
Y=Loga+tlogh
This reduces to Z = A + Bt
Where Z=Logy

A=Lloga
B=Logb

This can now be solved as a simple linear regression model for forecast where
is dependent variable and t is independent variable as before.

3)  Double log form

Y=at’
LogY =Iloga+blogt
ie.Z=A+bT

14 where Z=1log Y A=loga; T Log t.



This can now be solved as normal bivariate regression equation to forecast sales for
the next period.

It is now time to introduce the concept of multiple regression model
Y=L, +BX,+ L, X, + B Xy + oo +p X, +¢

The assumptions are exactly same as simple linear regression except that you add X,
D C T Xy in the place of X because Y is linearly related to X;............. X
and our aim is to understand the combined influence of the K factors Xj,

D C TP X, on Y. To understand the concept clearly, let us study a case of 2
independent variables and write the model as

Y=8,+BX +B,X,+¢

so that Y = a + bX;+ cX, being the estimated regression equation where we add one
more independent variable X, in the model. Suppose we extend the previous example
of bivariate regression on preference rating Vs protein (X;) by adding Xj: the
percentage of minimum daily requirements of vitamin D per standard serving. Let us
see how the multiple regression model emerges to explain the variation in the
dependent variable Y caused by X, and X,. Let us look at the following table giving
the data on Y, Xj, and X,.

Rater Preference Rating Protein Vitamin D
Y X X,

Y =43
YX,=43
ZX2:40

W =W Ooh

YYX, =247
YYX, =232
¥ X% =255

3 X%=226

Y X, X2 =229

O W oo NN — N 9w

oo W
W I DO B~ W~ I

O 00 3O\ L A~ W~

0
The normal equations are:

Y =Na+) Xi+cY X,
YYX=aYy X +bY X +¢Y X, X,
YYX, =aYX, +bY XX, + ¢ ¥X%

\®)
—_

10a +43b + 40c =43
43a+255b +229¢ =247
40a + 229b + 226¢ =232
Solving for a, b and ¢ we have
a=0.247

b=0.493

c=0.484

Y=10.247 + 0.493 X, + 0.484 X,

Here b and c are called partial regression coefficients b = 0.493 denotes the change-in
Y per unit change in X; when X, is held constant. Similarly ¢ = 0.484 denotes the
change in Y per unit change in X, when X; is held constant.

By now you must have notified the cumbersome calculations involved when the
number of variables increase and becomes extremely difficult when the number of

variables is more than 3. One has to resort to computer based regression models. In fact

it may be mentioned here that all multivariate procedures require the help of computer
when the variables and observations are large. As before we can calculate the other co-
efficients like R” co-efficient of multiple determination and R multiple correlation co-
efficient and also ANOVA for hypothesis testing. The author has developed his own
user friendly program for multiple regression with a conversational

Regression Analysis,
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Multivariate Analysis style based on IBM PC MS DOS. We will use the output of the program and interpret
@ the results of our problem which is the most important aspect for us.

Multiple Linear Regression

Number of Variables ? 3
MNumber of Observations T 10

WANT TO CHANGE NUMBER OF VARIABLES/NUMBER OF
OBSERVATIONS (Y ORN) ? N

NAME OF VARIABLE # | T Y

NAME OF VARIABLE # 2 7 X1

NAME OF VARIABLE # 3 7 X2

DATA GATHERED FOR VARIABLE Y :
— PERIOD
— PERIOD
— PERIOD
— FERIOD
— PERIOD
— PERIOD
— PERIOD
— PERIOD
— PERIOD
— PERIOD

DATA GATH
— PERIOD
— PERIOD
— PERJOD
— PERIOD
— PERIOD
— PERIOD
— PERIOD
— PERIOD
— PERIOD
— PERIOD

DATA GATH
— PERIOD
— PERIOD
— PERIOD
~— PERIOD
— PERIOD
— PERIOD
— PERIOD
— PERIOD
— PERIOD
— FERIOD

Correlation Matrix
! 85
A 1

85 .84 1

LR R R LY L
E\qumm-ﬁ-mm:—-
B B B R I - L B Y
b N I N T S R R

m
o

RED FOR VARUABLE X1 :

ot e o o o o oW o
SN0 00 ) O LA g L B b
B b - B T R = TR [ T ..._-.w

—
} Hmmﬂbml—nm\ah

m

RED FOR VARI ABLE X2:

L I i TR T

- R = R e ™
[ I R - - LC |

[P [ Y. R O O S I

ey
-3 +3

2R

Variance Covairiance Matrix

2.9 6.9 6.67
6.9 2.79 6.33
6.67 6.33 2.71

Variable Mean Std Deviation
Y 4.3 2.907844
X1 4.3 2. 790858
x2 4 2. 708013

CONTINUIZ 7Y
CONTINUIZ 7Y
16



Regression Equation Regression Analysis,

Dependent Variable: Y Discriminent Analysis
Independent ESTIMATED  BETA % Errors T-Test 2y i Analysis
variable COEFFICIENT ®)
X1 49 49 34 1.47
X2 A8 45 35 1.4
CONSTANT 24711704
Determination Coefficient = 78
Correlation Coefficient = .89
F-Test = 12.65
Degrees of Freedom = 2,7
Sum of squares of error = 16.49
CONTINUE?
CONTINUE? TABLE OF RESIDUAL VALUES
# Observation Estimation Residual
1 3 3.18 -.18
2 7 8.07 -1.07
3 2 2.21 -.21
4 1 1.71 -71
5 6 3.18 2.82
6 2 4.15 -2.15
7 8 8.05 -.05
8 3 2.69 31
9 9 7.57 1.43
10 2 2.19 -.19
CONTINUE ?Y
Analysis of Variance Table
Source Degrees of Sum of Mean F Ratio
Freedom Squares Square
Due to Regression 2 59.61 29.81 12.65
Due to Error 7 16.49 2.36
Total 9 76.1

Another Analysis (Type Y or N)?

The program output gives many other statistical analysis which we will not touch
upon now, and come to our important tests straightway. The residual or error between
Y and 1'i.e. between actual and forecast on important measure of reliability of the
model is printed out for each observation. If you look at the errors, you get a fairly
good idea about the model equation. However for validity of the regression equation,
you look first at the coefficient of multiple determination R* and multiple correlation
coefficient R. In our example R* = 0.78 and R = 0.89 which is a satisfactory one
indicating that the preference rating Y is linearly related to protein intake X; and
vitamin D intake X,. It tells that 78% of variation in Y is explained jointly by the
variations in X; and X2 jointly.

Hypothesis testing for linearity through ANOVA.

H,: B1& P2 = 0=> There is no linear relation between Y, X; and X,.
H, : B1& P, =0=> There is linear relationship.
Look at the ANOVA

The calculated F = 12.65
The table F (2, 7) = 4.74 at 5% level. Reject H, and accept H;.

That is the linear regression equation between & X, X, is statistically valid. We are
9%% confident that preference rating is linearly related to X; and X,, and the equation
is Y=10.247 + 0.49X; + 0.48X,
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Points to ponder on Multiple regression analysis
1) Equation should be validated statistically.

2) For forecasting the dependent variable, the independent variables should be
forecast first.

For example if demand is a function of price index and production index
established by a multiple regression model, then to forecast demand for the next
period, it is imperative first to forecast the price index and production index and
:then substitute them in the model to get the forecast for demand. This is one of
the limitations of regression forecasting.

3) When the variables become too many the analysis is complex and very often the
market researcher does not know which variables to retain. This problem could
be overcome by doing “stepwise regression' on computer. For example if
demand is a function of 20 variables, we first fit demand equation with 3
important variables which we think affect demand. Suppose R*= 0.85 that is
85% of the variation in demand is explained by these variables, we add another
two more variables of importance to make five independent variables. Now if R*
= 0.95 we can as well stop adding further variables as the contribution may not
appreciably improve the situation. We can thus visualise demand as a function
of just 5 variables. The various permutations of changing and adding variables is
possible only with the help of a computer. The important point to remember is
that the cat off point for the number of variables to be added should be based on
the increase every time you get on R>. The moment the increase is marginal, stop
adding variables.

4) If the independent variables among themselves are highly correlated, then we
are facing the problem of multicollinearity’. Normally we say that the partial
regression coefficient-with respect to X, implies change in Y per unit change in
X provided X;, X5 are held constant. This poses% serious problem if
there is multicollinearity. One way to overcome multicollinearity is to drop
certain variables’ from the model if the corresponding standard error of
regression coefficient are unduly large. Another method is to see whether the
original set could be transformed into another linear composite so that the new
variables are uncorrelated.

12.4 DISCRIMINANT ANALYSIS

It has been pointed out earlier, that the discriminant analysis is a useful tool for
situations where the total sample is to be divided into two or more mutually exclusive
and collectively exhaustive groups on the basis of a set of predictor variables. For
example, a problem involving classifying sales people into successful and
unsuccessful; classifying customers into owners or and non-owners of video tape
recorder, are examples of discriminant analysis.

Objectives of two group discriminant analysis :

1  Finding linear composites of the predictor variables that enable the analyst to
separate the groups by maximising among groups relative to with in-groups
variation.

2 Establishing procedures for assigning new individuals, whose profiles hilt not
group identity are known, to one of the two groups.

3 Testing whether significant differences exist between the mean predictor
variable profiles of the two groups.

4  Determining which variables account most for intergroup differences in mean
profiles.

A numerical example

Let us return to the example involving ready-to-eat cereal that was presented in the
regression analysis. however in this problem die ten consumer raters are simply asked
to classify the cereal into one of two categories like versus dislike. The data is given
below: Here again



Xi: The amount of protein (in grams) per standard serving. Regression Analysis,

Discriminent Analysis
and Factor Analysis
Also shown in the data table are the various sums of squares and cross products; the @

means on X1 and X2 of each group, and total sample mean,

X, : The percentage of minimum daily requirements of vitamin D per standard serving.

Consumer evaluations (like versus dislike) of ten cereals varying in nutritional

content
Person Evaluation Protein vitamin D X% X4 XX,
X X,

1 Dislike 2 4 4 16 8

2 Dislike 3 2 9 4

3 Dislike 4 5 16 25 20

4 Dislike 5 4 25 16 20

5 Dislike 6 7 36 49 42
Mean 4 4.4 Sum90 110 96

6 Like 7 6 49 36 42

7 Like 8 4 64 16 32

8 Like 9 7 81 49 63

9 Like 10 6 100 36

10 Like 11 9 121 81 99
Mean 9 6.4 Sum 415 218 296
Grand Mean. 6.5 5.4

Standard deviation 3.028 2.011
The grand mean is X; = 6.5, X, =5.4

We first note from the' table that the two groups are much more widely separated on
X (protein) than they are on X, (Vitamin D). If we were forced to choose just one of
the variables, it would appear that X is a better bet than X,. However there is
information provided by the group separation on X,, so we wonder if some linear
composite of both X; and X, could do better than X, alone. Accordingly we have the
following linear function:

Z =KX, +K,X; where K; and K, are the weights that we seek.

But how shall we define variability? In discriminant analysis, we are concerned with
the ratio of two sums of squares after the set of scores on the linear composite has
been computed. One sum of squared deviations represents the variability of the two
group means on the composite around their grand mean. The second sum of squared
deviations represents the pooled variability of the' individual cases around their
respective group means also on the linear composite. One can then find the ratio of
the first sum of squares to the second. It is this ratio that is to be maximised through
the appropriate selection of K, and K. Solving for K, and K2 involves a procedure
similar to the one encountered in the multiple regression. However in the present
case, we shall want to find a set of sums of squares and cross products that relate to
the variation within groups. For ease of calculation let us define x; = X;- Xjand x, =
X2 - X2 (i.e. each observation measured from its mean)

Solving for K, and K,

Mean corrected sums of squares and cross products.

Dislikers Likers Total
Y=Y w-x) =Y X -NXi = 10 10 20
Y=Y -x) =Y XI-NXi = 13.2 13.2 26.4
> X6 =2 =x )X —x2) =Y x5~ NX1X> 8 8 16
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The normal equations are

K> x 1+K,Y xx, =X, (Likers)- X, (dislikers)
K> xx,+K,> x 2 =X,(Likers)— X, (disliker s)
20K, +16K, —64-44=2

Solving these two simultaneous equations, we have K; = 0.368, K, =- 0.147
Discriminant function Z = 0.368X;- 0.147X,

We can also find discriminants scores for the means of the two groups and' the grand
mean.

Z (dislikers) = 0.368 (4) - 0.147 (4.4) = 0.824
£ (likers) = 0.368 (9) - 0.147 (6.4) = 2.368
£ (grand means) = 0.368(6.5) - 0.147 (5.4) = 1.596

We note that the discriminant function "favours" X; by giving about 2.5 times the
(absolute value) weight (K; = 0.368 versus “2= - 0.147) to X1 as is given to Xo.

The discriminant scores of each person are shown below. Each score is computed by
the application of the discriminant function to the persons original'X; and X, values.

Dislikers Likers

Person Discriminant Person Discriminant
Score Score

1 0.148 6 1.691

2 0.809 7 2.353

3 0.735 8 2.279

4 1.250 9 2.721

5 1.176 10 2.721

Mean 0.824 Mean 2.368

Grand Mean 1.596

Between group variability

5(0.824 -1.596)* + 5 (2.368 - 1.596)* = 5.96

W ithin group variability

Dislikers (0.148 - 0.824)% + (0.809 - 0.824)* + ........ (1.176 - 0.824)* = 0.772

Likers (1.691-2.368)> + (2.353 -2.368)* + (2.721 + 2.368)* = ?Z—zi
Discriminant criterion C :ﬂ =3.86
1.544

Since the normal equations for solving k1 and 1c2 are obtained by maximising the ratio
between group and within group variance the discriminant criterion as calculated above
= 3.86 will be the maximum possible ratio. If We suppress X2 in the discriminant
function and calculate another C, it will be less than 3.86: It is rather interesting that the
optimal function Z = 0.368 X1 - 0.147 X2 is a difference function in which X2 (Vitamin
D) receives a negative weight bringing thereby the importance of XI to the highest
order. This means protein is much more important than Vitamin D.

Classifying the persons

It is all well and good to find the discriminant function, but the question is how to
assign the persons to the relevant groups.

IS Lilkcers
1.596
Mean Score 0,824 2.368 { Grand Mean
— — I
r T
0824 e u:-'.::j
(Dvislikers) (Midpoine)

e  Assign all cases with discriminant scores that are on the left of the midpoint
(1.596) to the disliker group.



e  Assign all cases with discriminant scores that are on the right of the midpoint
(1.596) to the liker group.

That is all true dislikers will be correctly classified as such and all true likers will be
correctly classified, This can be shown by a 2 x2 table:

Assigned by Rule
True State Disliker Liker Total
Disliker 5 0 5
Liker 0 5 5
Total 5 5 10

Testing Statistical Significance

While the discriminant function does perfectly in classifying the ten cases of the
illustration on protein (X;) and vitamin (X,) into likers and dislikers, we still have not
tested whether the group means differ significantly. This is also based on F ratio
which required calculation of Mahalanobis D?. This calculation of F is a little
complicated which is normally an output parameter in the standard package like
Biomedical computer program and SPSS of IBM. Biomedical computer program of
the University of California press is an outstanding software containing all
multivariate procedures. For our illustration let us calculate F

mny(m +nm,—m-1)
m(n, +n,)(n, +n,—2)

~F distribution with myn; + n, - m -1 d.f.

where n; =number of observations in group 1
n, = number of observations in group 2
m = number of independent variables
D’ = Mahalanobis square distance

In our problem n;=5
n,. = 5

m =2 (X and X;)
Simple way of calculating D* would be to use the discriminant function

D’ =(n; +ny-2) (0.368 (5.0) - 0.147 (2))
=8(0.368 X 5-0.147x2)=12.353
You please note that the expression within brackets is the discriminant function Z =

0.368 X, -0.147) (; where X, and X2 are substituted by the respective group means
difference: X (likers) - X; (dislikers), X, (likers) - X2 (dislikers)

_5x5(5+5-2-1)
2x(5+5)(5+5-2)
_ X7 15353-13.511

2x10x8

Table F(2,7)=4.74at 5% level.

12.353

Since the calculated F exceeds table F at 5% level, reject H, and accept H; i.e. the
group means are not equal in importance with a probability of 95%. This clearly
validates the relative importance of X far higher than X.

Brief remarks on Multiple Discriminant Analysis :

You would have realised by now the complexity of calculations in the discriminant
analysis involving 2 predictors which itself needs computer based solutions when the
number of observations increases considerably. Multiple discriminant an analysis is
invariably carried out by means of computer programs. One of the most flexible and
eomprehensive programs in BMD-07M of the biomedical program series of the

Regression Analysis,
Discriminent Analysis
and Factor Analysis

®
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University of California press. SPSS also has all multivariate procedures. It may be
mentioned that the basic structure of the bivariate analysis remains same in multiple
case also. What is important for you is interpretation of the results and findings of the
study.

Activity 2
What are the differences between Regression Analysis and Discriminant Analysis?

12.5 FACTOR_ANALYSIS

Factor analysis is a generic name given to a class of techniques whose purpose ns
data reduction and summarisation. Very often market researchers are overwhelmed
by the plethora of data. Factor analysis comes to their rescue in reducing the number
of variables. Factor analysis does not entail partitioning the data matrix into criterion
and predictor subsets; rather interest is centred on relationships involving the whole
set of variables. In factor analysis;

1  The analyst is interested in examining the "strength" of the overall association
among variables in the sense that he would like to account for this association in
terms of a smaller set of linear composites of the original variables that preserve.
most of the information in the full data set. Often his interest will emphasize
description of the data rather than statistical inference.

2 No attempt is made to divide the variables into criterion versus prediction sets.
3 The models are primarily based on linear relationships.

Factor analysis is a "search" technique. The researcher-decision maker does not
typically have a clear a priori structure of the number of factors to be identified. Cut
off points with respect to stopping rules for the analysis are often ad hoc as the output
becomes available. Even where the procedures and rules are stipulated in advance,
the results are more descriptive than inferential.

The procedure involved in computation of factor analysis is extremely complicated
and cannot be carried out effectively without the help of computer. Packages like
SPSS, SAS and Biomedical programs (BMD) can be used to analyse various
combinations leading to factor reduction. We will make an attempt to conceptualise
the scenario of factor analysis with emphasis on the interpretation of figures.

The term "factor analysis embraces a variety of techniques. Our discussion focuses
on one procedure: principal component analysis and the factors derived from the
analysis are expressed as linear equations. These linear equations are of the form

Fi = AX T QX A3 e e FamiXm

The i factors are derived, and each variable appears in each equation. The a-
coefficients indicate the importance of each variable with respect to a particular
factor coefficient of zero indicating the variable is of no significance for that factor.
In principal component analysis; the factors are derived sequentially, using criteria of
maximum reduction in variance and non-correlation among factors.

Let us go to a specific example to explain factor analysis and its output.



Example Regression Analvsis.

Discriminent Analysis
and Factor Analysis

®

A manufacturer of fabricating parts is interested in identifying the determinants of a
successful salesperson. The manufacturer has on file the information shown in the
following table. He is wondering whether he could reduce these seven variables to
two or three factors, for a meaningful appreciation of the problem.

Data Matrix for Factor Analysis of seven variables (14 sales people)

Sales Height Weight Education Age No. of Size of 1Q
person  (Xy) (x2) (x3) (x4) Children(x;) household (%)
1 67 155 12 27 0 2 102

2 69 175 11 35 3 6 92

3 71 170 14 32 1 3 111

4 70 160 16 25 0 1 115

5 72 180 12 36 2 4 108

6 69 170 11 41 3 5 90

7 74 195 13 30 1 9 114

8 68 160 16 32 1 3 118

9 70 175 12 45 4 6 121
10 71 180 13 24 0 2' 92
11 66 145. 10 39 2 4 100
12 75 210 16 26 0 1 109
13 70 160 12 31 0 3 102
14 71 175 13 43 3 5 112

Can we now collapse the seven variables into three factors? Intuition might suggest
the presence of three primary factors : A maturity factor revealed in age/children/size
of household, physical size as shown by height and weight, and intelligence or
training as revealed by education and 1Q,

The sales people data have been analysed by the SAS program. This program accepts
data in the- original units, automatically transforming them into standard scores. The
three factors derived from the sales people data by a principal component analysis
(SAS program) are presented below

Three, factor results with seven variables.

Sales people characteristics Factor

'Variable | I III  |Communality
Height 0.59038 [0.72170 |- 0.30331 (0.96140
Weight 0.45256 10.75932 [-0.44273 (0.97738
Education 0'.80252 10.18513  |0.42631 |0.86006

Age -0.86689 0.41116 [0.18733 [0.95564

No. of children -0.84930 (0.49247 |0.05883  [0.96730

Size of household -0.92582 (0.30007 | 0.01953 [0.94756

1Q 0.28761 10.46696 [0.80524 (0.94918

Sum of squares 3.61007 [1.85136 |1.15709

[Variance summarised 0.51572 10.26448 10.16530 10.94550

Factor Loadings: The coefficients in the factor equations are called "factor
loadings" They appear above in each factor column, corresponding to each variable.
The equations are

F1 =

Fz 3

0.59038x; + 0.45256x2 + 0.80252x, - 0.86689x%,
- 0.84930x5 0.92582x, + 0.28761x,

0.72170x; + 0.75932x2 + 0.18513x3 + 0.41116x4
+0.49247x5 +0.30007x¢ + 0.46696x,
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F; = - 0.30331x,- 0.44273x, + 0.42631x5 + 0.18733x4
+0.5883x5 - 0.01953x¢ + 0.80524x,

The factor loadings depict the relative importance of each variable with respect to a
particular factor. In all the three equations, education (x3) and IQ (x;) have got
positive loading factor indicating that they are variables of importance in determining
the success of sales person.

Variance summarised : Factor analysis employs the criterion of maximum
reduction of variance -variance found in the initial set of variables. Each factor
contributes to reduction. In our example Factor I accounts for 51.6 per cent of the
total variance. Factor II for 26.4 per cent and Factor III, for 16.5 per cent. Together
the three factors "explain almost 95 per cent of the variance.

Communality : In the ideal solution the factors derived will explain 100 per cent of
the variance in each of the original variables, "Communality" measures the
percentage of the variance in the original variables that is captured by the
combination of factors in the solution. Thus a communality is computed for each of
the original variables, Each variables communality might be thought of as showing
the extent to which it is revealed by the system of factors. In our example the
communality is over 85 per cent for every variable. Thus the three factors seem to
capture the underlying dimensions involved in these variables.

There is yet another analysis called varimax rotation, after We get the initial results.
This could be employed if needed by the analyst. We do not intend to dwell on this
and those who want to go into this aspect can use SAS program for varimax rotation.

In the concluding remarks, it should be mentioned that there are two important
subjective issues which should be properly resolved before employing factor analysis
model. They are

1) How many factors should be employed in attempting to reduce the data? What
criteria should be used in establishing that number?

2) The labeling of the factors is purely intuitive and subjective.
Activity 3
Mention briefly the purpose and uses of factor analysis

12.6 SUMMARY

We have started our discussion by giving an overview of the various multivariate
analysis procedures in the context of associative data with a marketing orientation.
We have given a brief introduction of the multivariate tools and their applicability in
the relevant problem areas.

We have discussed the concept of analysis of variance. We have clearly brought out
the assumptions underlying the one way and two-way classification models and the
methodology of separation of total variance into meaningful components variations
and en-or variations. Hypothesis testing using ANOVA table has been clearly
explained using examples from marketing which include testing sales and service
effectiveness using experimental data.



The next topic of discussion has been the regression analysis, which is probably .the Regression Analysis,

most widely used technique amongst the analytical models of association. We have Discriminent Analysis
started the simple linear regression model first to introduce the concept of regression and Factor Analysis
and then moved on to the multiple linear regression mode All the underlying @

assumptions of the model have been clearly explained. Both the bivariate and
multivariate regression models have been illustrated-using the example of preference
rating as a function of protein intakes, and vitamin D intake perception in the case of
a ready to eat cereal. The concept of testing the linear equation, contribution made by
regression in explaining variation in dependent variables and strength of association
have all been explained using ANOVA table. A brief account of the role of
regression in sales forecasting involving time series analysis has also been given. The
need for resorting to computer solutions for large number of variables and
observations has been brought out with an actual print out of the example already
discussed. The concept of stepwise regression and the problems encountered in any
regression analysis have also been explained.

Then we have gone to the discriminant analysis technique-a technique when the
interest is to classify the groups on the basis of a set of predictor variables. We have
explained the concept of separation by giving examples of classifying sales people
into successful and unsuccessful, customers into owners and non-owners etc. As
before, we have begun the discussion with discriminant function involving two
predictor variables using the example of ‘ready to eat cereal problem' but with a
difference - classifying the persons into liker group and disliker group. The
discriminant function, the discriminant criterion and the assignment rule have all
been explained testing the statistical significance using F test based on Mahalanobis
D’ has also been carried out. We have pointed out that the multiple discriminant
analysis involving more than two predictor variables require the use of computer
although the basic structure of the model does not change.

Factor analysis is the last multivariate tool that we have discussed in this unit. We
have first mentioned that the fundamental objective of factor analysis is to reduce the
number of variables in the data matrix. Then it has been pointed out that the
computation of any factor analysis involves dry complex calculations which will
have to be solved using computer packages like SAS. The concepts of "factor
loading", "variance summarised" and "communality" have been clearly explained
using one practical example that has been solved by SAS program. The subjective
issues like "how many factors?" "what criteria to decide this number?" and "labelling

of the factors" have been mentioned at the end.

As concluding remarks, it may be mentioned here that 1) all multivariate procedures
can be more effectively solved using standard computer packages when the number
of variables and number of observations increase significantly, 2) what is more
important is the ability to interpret the results of the market research study involving
multivariate analysis.

12.7 SELF-ASSESSMENT EXERCISES

1 a) Inademand forecasting study involving a normal commodity, two simple
linear regression models are fitted:

D=8.5+0.22p (I’ =0.75)

Log D=1.3+0.10 log p (r* = 0.80)

1) which model would you prefer and why?

i1) mention the dependent and independent variables.

b) A manufacturer of industrial supplies developed the following model for
predicting the number of sales per month

Y =41+ .3X,+.05X; - 7X5+ 10X, 25



Multivariate Analysis where Y = Sales per month
@ X;= Number of manufacturing firms'
X, = Number of wholesale and retail firms
X3 = Number of competing firms
X4 = Number of full time company sales people.

1) Explain the correct interpretation of all estimated parameters in the equation.
i1) If R = 0.49, what' does this figure mean, to you?
1ii) Explain how you will go about testing the validity of this multiple linear

regression equation:

2 The following discriminant function was developed to classify sales persons
into successful and unsuccessful sales person

Z=053X;+2IX;+ 1.5X;

Where X, =no, of sales call Made by sales persons.
X, = no.. of customers developed by sales person.
X3.=no. of units sold by sales person.

The following decision -rule was developed.

if £ < 10, classify the sales person as successful

if Z <10, classify the sales personas unsuccessful.

The sales persons A and B were considered for promotion_ on the basis of
being classified as successful or unsuccessful. Only the successful sales
person would*be promoted. The relevant data on A and B, is given below :

A B
X 10 11
X, 2 1.5
X3 1 0.5
whom will you promote?

3 A large sample of people were asked to rate how much they liked each of 5
beverages -coffee, tea, milk, fruit juice and soft drinks. Through factor
analysis
Coffee -219 363 -.338 0.2939
Tea -.137 .682 307 0.578t
Milk 514 -213 =277 0.3611
Fruit Juice. 485 -117 115 0.2621
Soft drinks -.358 -.635 534 0.8165
Sum of squares 0.6943 1.0592 0.5584
Variance 0.1389 0.2118 0.1117 0.4624
summarised
a) Write the linear equations for all the three factors.

b) Interpret the loading co-efficients, variance summarised and

communality ' values of this table.
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